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The essence of modeling lies in establishing relations between pairs of
system descriptions. (Zeigler, Praehofer, & Kim 2000; p. 295)

INTRODUCTION
In this chapter we provide a Brunswikian perspective on human interaction with everyday
technologies such as traffic lights, automotive devices (e.g., warning systems), and also
advanced technologies such as flight control systems in modern airliners. We apply this
perspective toward suggesting a framework for evaluating interface designs and for
ultimately improving the usability, robustness, and effectiveness of a range of interactive
technologies.

Today’s automated systems, such as modern commercial “glass cockpit” aircraft, afford
the user various levels, or “modes,” of interaction, ranging from fully manual to fully
automatic. These modes provide the pilot with various control strategies to achieve a
given goal. In all automated control systems, including those found in cars, ships, and
aircraft, the control modes are discrete whereas the behavior of the controlled system
(e.g., the aircraft) is continuous. In commercial aviation, the pilots’ task of coping with
the mapping between discrete mode changes and dynamic, continuous changes such as
altitude, heading, and speed is challenging. Incident and accident data show a strong
relationship between environmental demands (e.g., air traffic control clearances), mode-
selection strategies, interface design, and operational problems (Degani, 1996, see
Chapter 7).

We believe that a deeper understanding of the nature and implications of the relationships
between the demands of the operational environment (e.g., air traffic control), the
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physical space in which performance occurs (e.g., the airspace), the technology that’s
employed (the automation and its interfaces), and, finally, human cognition are important
for enhancing human interaction with the semi-automated systems of today and,
hopefully, the autonomous systems (e.g., planetary rovers) of the future.

VICARIOUS FUNCTIONING, A.K.A. “PURPOSIVE BEHAVIOR”
“There is a variety of ‘means’ to each end, and this variety is changing, both variety and
change being forms of vicarious functioning” (Brunswik, 1952, p. 18). In today’s
cognitive parlance, vicarious functioning might be glossed as flexible, goal-oriented
behavior. Wolf (1999) elaborates on the central role of this type of adaptive behavior in
Brunswik’s work by noting that Brunswik emphasized the adaptive relations between an
organism and its environment. His analysis of the environment revealed it to be
stochastic, dynamic, and non-repeating; at once ambiguous and partially redundant. In
response, adaptive behavior requires what Wolf terms a “virtuosity of replacement,” or an
ability to select from a wide repertoire of adaptations in response to the dynamic structure
of the environment at each point in time.

As a synonym for vicarious functioning, Brunswik himself (1952, p. 16) used the more
transparent phrase purposive behavior. He noted that without a goal or purpose, behavior
itself is hard to define: He agreed with E. G. Boring that nothing would make a robot
seem more human than “an ability to choose one means after another until the goal is
reached” (Brunswik, 1952, p. 17). Wolf (1999) notes the similarity of Brunswik’s
concept of vicarious functioning to a currently popular approach in AI, i.e., “reactive”
(incremental, least-commitment) planning:

“According to Brunswik it is typical for humans to make use of alternatives, to
commit only provisionally in order to keep possibilities for revision open [cf.
Connolly, 1999]. For human perception—or  more generally cognition—as well
as for human action, it is necessary to cope with inconsistent, unexpected,
incomplete, and imperfect events.”

This emphasis on incremental opportunism and robustness has connections with other
distinctive characteristics of Brunswik’s psychology: the entire program of probabilistic
functionalism, the lens model, and the requirement to conduct research in representative
environments (Brunswik, 1956). If dynamic and stochastic ecological processes are
abstracted away, leaving only the bite-board and the response-key, then neither
perception nor the control of action can exhibit their evolved relations. As Allen Newell
memorably put it, “If you study simple systems, you will learn a lot about simple
systems.”

A FIELD STUDY OF HUMAN-AUTOMATION INTERACTION IN
COMMERCIAL AVIATION
Degani (1996) made cockpit observations of pilots’ interactions with the automatic flight
control system of the Boeing 757/767 aircraft during 60 flights (cf. Casner 1994; this
volume). During the flights, every observable change in the aircraft’s control modes,
either manually initiated, (e.g., the pilot selected a new mode) or automatically initiated,
(e.g. an automatic mode transition) was recorded, along with all the parameters relating to
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the flight control system status (e.g., waypoints and altitude values selected by the pilot).
Likewise, every observable change in the operating environment (e.g., a new ATC
instruction, switching from one ATC facility to another) was recorded, along with other
variables such as the aircraft’s altitude, speed, and distance from the airport. In a way, it
was like taking a snapshot of every change that took place in the cockpit. Overall, the
dataset consisted of 1,665 such snapshots. Each snapshot consisted of 18 categories
describing the status of the automatic flight control system, and 15 categories describing
the operational environment. Data analysis and presentation is discussed below.

Analysis, Visualization, and Interpretation
Jha and Bisantz (2001; also see Jha & Bisantz this volume) noted that the multivariate
lens model can be extended to the analysis of categorical judgments. Methods for the
analysis of multivariate categorical data were integrated and generalized during the 1980s
and 1990s, by relating multivariate analysis to graphical algorithms (De Leeuw &
Michailidis, 2000). This line of work unifies principal components analysis, canonical
correlation analysis, and other types of multivariate analysis, and extends their coverage
to include categorical data.

To analyze the field data described above, we used one version of this type of approach,
canonical correlation analysis, to quantify the relations between patterns of
environmental variables and patterns of mode selections (see Degani, 1996, and Shafto,
Degani, & Kirlik, 1997, for details). We considered the environmental patterns to be the
independent variables (X) and the automation mode selection patterns to be the
dependent variables (Y). Conceptually speaking, this analysis correlates two multivariate
patterns in the same way bivariate correlation measures the relationship between two
single (X, Y) variables.

Due to the high dimensionality of our dataset, we explored several graphical methods to
help us understand and communicate the relationships between the two multidimensional
patterns found by the canonical correlation. One of the most helpful suggestions we
found was due to Cliff (1987), advocating presentation of structure correlations rather
than weights. Structure correlations are the correlations of the X canonical variate with
each of the original independent variables, and of the Y canonical variate with each of the
original dependent variables. In this way, the canonical variates can be interpreted in
terms of observed variables.

To display the independent X (environmental) and dependent Y (technology use)
patterns, we developed a visual display we termed a “heliograph.” In this sunburst-like
display (see Figure 1), the relative sizes of the structured correlations are indicated by the
lengths of the bars extending outward or inward, both indicating relations between
features of the ecology and features of technology use.
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Figure 1.  Heliograph Showing the Patterns (r = .95) Between the Features of the Operational
Environment (x) and Pilots’ Mode Selections (y)

Figure 1 shows two strong patterns between the demands of the operational environment
(X), and mode selections (Y): The first pattern (dark bars), shows that when aircraft
altitude is above average (of 13,000 feet), during the “descent” (Phase of flight), and
while under “approach” (ATC Facility), and in response to a “descend to altitude”
clearance—flightcrews usually engage “Flight Level Change” (Pitch) mode, cruise
(Thrust) mode, and engage the autopilot. The behaviors can all be classified as engaging
“supervisory” modes of automation, in that automation has direct control over the
aircraft, while the flight crew mainly supervises, monitors, and intervenes only when
necessary (see Sheridan, 1997, on “supervisory control”).
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The second pattern (white bars) shows that while under “departure” (ATC Facility)
control and in response to a "climb to altitude” clearance, flightcrews usually engage
“Vertical Navigation” (Pitch) mode, climb (Thrust) mode, and the autothrottles. In
addition to the engaged modes, it is also important to note in Figure 1 what is not
engaged. In the first pattern (dark bars), note that the “autothrottles” did not appear,
meaning that many pilots do not engage the autothrottles during the descend/approach
phase (rather, they manually move the throttles). As for the second pattern (white bars),
note that the autopilot is not always used during departure and initial climb-out and that
many pilots prefer to hand fly the aircraft during this phase of flight. Finally, the plot in
the upper left corner of the graph is a conventional scatter diagram showing the
relationship between the two composite variables (X and Y), plotted here in standard
units, suggesting a strong (r=0.95) overall relationship between the patterns.

It is possible to use canonical correlation to identify additional patterns in data sets such
as these, and the reader can refer to Degani (1996) for three other heliographs based on
the same data set demonstrating additional environmental-automation usage patterns with
correlations of r=0.88, r=0.81, and r=0.72. Overall, the canonical correlation analysis
produced eight meaningful, consistent, and statistically independent patterns that were
later corroborated by expert pilots. Two of the empirically derived patterns actually
turned out to mirror standard operating procedures at this particular airline.

In addition to identifying patterns, canonical correlation can be used to help the analyst
define, in a data-driven way, the most important environmental cues that affect judgment
and action selection on the user’s side (in this case, mode selection). Equally as important
are deviations from any central tendencies in these patterns. Such deviations (outliers)
from a standard pattern of human-automation interaction derived from data across many
users can mean two things: either an unusual (yet safe) mode selection, or a dangerous
(and potentially unsafe) mode selection.

For example, one flight in our data set was an obvious outlier, falling 7 standard
deviations from the mean on one of the spatial dimensions. Inspection of the data
revealed that the autothrottles were not used throughout the flight. The reason for this
was that the aircraft had been dispatched with inoperative autothrottles, and hence they
were not used throughout the flight. This situation was definitely unusual, but not unsafe,
because the crew knew of the inoperative autothrottles well before the flight, and planned
their flight accordingly.

As for unsafe outliers, two flights were observed falling 3 standard deviations from the
mean. These flight crews used the “Flight Level Change” mode while making a final
approach for landing during what is termed a “back-course localizer” approach to a
runway. This situation, in which the glideslope instrument system is unavailable, is quite
a rare occurrence (almost all runways that are used by large aircraft do indeed have
glideslope instrumentation, yet sometimes the system malfunctions or is shutdown for
maintenance). The selection of the “Flight Level Change” mode in this particular
situation is potentially dangerous during final approach and many airlines have
procedures in place to warn pilot against using it at low altitude. Indeed, its use at very
low altitudes has contributed to several near fatal incidents and two accidents (Indian
Court of Inquiry, 1992; Ministry of Planning, Housing, Transport and Maritime Affairs,
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1989). Usually, flight crews use the “Flight Level Change” mode during descent, and
then switch to “Glide Slope” mode on final approach. But on these two occasions during
the field study, because there was no glideslope instrument (and therefore no cue to
prompt crews to switch modes), flight crews kept on descending using the “Flight Level
Change” mode, which, as mentioned earlier, is not safe for making a final approach.

We believe that the above examples of unsafe mode usage represent instances of a
broader class of human-technology interaction problems associated with discretely
mediated interaction with, and control over, variables that are highly dynamic. Presenting
a system operator, such as a pilot, with an abstracted, discrete suite of action
opportunities, and an abstracted, solely discrete display of automation operation (e.g.,
mode settings) can lead to situations where the controlled system drifts away into unsafe
regions where the fixed mode setting is no longer appropriate. This discrete approach to
automation and interface design, we believe, short-circuits some of the naturally evolved
psychological mechanisms supporting vicarious functioning in an ecology that is, or at
least once was, inherently continuous. With the result, we suggest, of undermining some
of the basic mechanisms of adaptive behavior itself. We now turn to examining and
elaborating this diagnosis and hypothesis in more detail.

WHAT KINDS OF ENVIRONMENTS SUPPORT VICARIOUS
FUNCTIONING?
Understanding, and especially predicting, human adaptation to dynamic environments is
by no means simple nor straightforward (Bullock & Todd, 1999; Kirlik, in press). How,
then, should we think about the design of digital and automated control systems so as to
meet the computational requirements posed by various tasks in these environments (e.g.,
aircraft navigation) on the one hand, and also leverage, if not short-circuit, our
evolutionarily acquired resources for flexible, goal-directed behavior on the other? One
approach that we believe is promising is to consider the physical space in which behavior
occurs, the technological spaces that increasingly characterize the ecology of modern
life, and the psychological space in which adaptive mechanisms operate.

Mapping out these spaces, and most importantly the relations among them, is what we
allude to in our title as characterizing and analyzing “the geometry of human-automation
interaction.”

Physical Space
Natural, physical space provides the strongest set of constraints on design, since we are
well equipped to adapt to constraints imposed by, inherently continuous, physical space.
Rarely do we try to walk through walls. Any discussion of physical space at the scale of
the human ecology starts with the four-dimensional trajectories to which we are
comfortably adapted. As long as four-dimensional Euclidean space is the only option, we
can rely on the typically fluent and highly adaptive perception and action mechanisms
that are keyed to getting around in this space; these are evolution’s legacy.

Technological Space
In contrast, when we consider the computer-based artifacts increasingly present in our
ecology, design options mainly span or sample discrete spaces (e.g., see Pirolli, this
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volume). The reason for this lies in the logic governing the behavior of any computer
system rooted in the discrete, finite-state machine (FSM) formalism, the von Neumann
architecture, and the Turing-inspired, algorithmic approach to software specification.
Additionally, in some automated control systems, we encounter hybrid spaces which
harbor both discrete logic (modes) and continuous parameters (such as speed and flight
path angle) that are based on laws of physics. We also encounter hybrid spaces in
computer networks, in which continuous variables like task priority and processing time
must also be considered to achieve robust communication and coordination (Lowe, 1992;
Roscoe, 1998; Schneider, 2000). The geometry of the computational ecology is complex
indeed. As we will suggest in the following, this complexity becomes mirrored in the
cognitive activities necessary to adapt to, and navigate through, these discrete and hybrid
ecologies.

Psychological Space
We now turn our attention to more distinctly psychological issues, relying on slightly
more metaphorical notions of space and geometry. A large and growing literature
supports the conclusion that psychological “space” also has both continuous and discrete
dimensions. Continuous psychological processes and representations mirror the structure
of physical space, in that they are have few dimensions, are strongly continuous, and are
strongly metric. In contrast, symbolic processes based in language and logic, which serve
as the basis for analytical cognition, are largely discrete, are weakly metric or non-metric,
and are typically discontinuous.

Kahneman (2003; see also Hammond, 1996, Hastie & Dawes, 2001, p. 4; and Sun, 2000)
contrasts between his notions of “System 1” (our “continuous”) and his “System 2” (our
“discrete”) psychological activities:

 “The operations of System 1 are typically fast, automatic, effortless, associative,
implicit (not available to introspection), and are often emotionally charged; they
are also governed by habit and are therefore difficult to control or modify. The
operations of System 2 are slower, serial, effortful, more likely to be consciously
monitored and deliberately controlled; they are also relatively flexible and
potentially tend to disrupt each other, whereas effortless processes neither cause
nor suffer much interference when combined with other tasks.” (p. 699)

In their analysis of dual-process theory (e.g., Kahneman’s System 1 and System 2),
Norenzayan, Smith, Kim, & Nisbett (2002) suggest that intuitive cognition (our
“continuous,” Kahneman’s “System 1”) tends to dominate over formal cognition (our
“discrete,” Kahneman’s “System 2”), although both systems are typically active
simultaneously:

“In recent years, a growing number of research programs in psychology have
examined these two cognitive systems under the rubric of ‘dual process’ theories
of thinking....These two cognitive systems coexist in individuals, interact with
each other in interesting ways, and occasionally may be in conflict and produce
contradictory inferences…. intuitive reasoning [continuity] tends to dominate,
but the relative dominance can be modulated by a variety of factors.” (pp. 654-
655)
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Current wisdom suggests that people can operate in either of these two contrasting modes
of cognition. A pioneer in theory along these lines, Hammond (1996), motivated by
Brunswik’s (1956) initial observations on the distinctions between perceiving and
thinking, has developed an even more sophisticated theory in which people can operate,
and even oscillate between, various points along a “cognitive continuum” with both
analytical and intuitive poles. Researchers such as Gigerenzer and Goldstein (1996),
Kirlik (1995), Klein (1999), Norenzayan et al. (2002), Reason (1990), and Rouse (1983),
among others, have all suggested that people tend to rely on intuitive as opposed to
analytical cognition when possible, although this preference can be mitigated by a variety
of factors (e.g., the demand for accountability or to justify one’s actions, necessitating
accessibility to the processes of thought, and thus more analytical cognition).

In short, we conceive of skilled, fluent, and robust adaptive behavior as relying heavily
on relatively resource-unlimited, intuitive cognition, which is most naturally supported
(as we will suggest in more detail in the following) by continuous ecologies. More
resource-intensive analytical cognition, in contrast, functions mainly to monitor the
ongoing success of intuitive behavior, and to intervene when necessary or demanded,
given that time and cognitive resources are available to do so (Kahneman, 2003). We
next discuss the crucial role played by continuity in supporting the intuitive, adaptive
mode behavior Brunswik described as “vicarious functioning.”

 ECOLOGICAL CONTINUITY: A KEY RESOURCE FOR VICARIOUS
FUNCTIONING
The most obvious source of the dominance or preference for cognition that is based on
continuous spaces and intuitive, or System 1, activities is their evolutionary priority.
These activities are responsible for coordinating perception and action in the physical
world, and as such, perception is adapted to the regularities of the physical environment
(Barlow, 2001; see also Hubbard, 1999; Shepard, 1999). Experiments by Shepard and
others have shown, for example, that the perceived trajectories of objects seen only in
successive snapshots obey the kinematics of actual objects moving through physical
space, as though physical laws had been internalized. Based on a sustained program of
research in this tradition, Shepard (1999) concluded that “...objects support optimal
generalization and categorization when represented in an evolutionarily shaped space of
possible objects as connected regions with associated weights determined by Bayesian
revision of maximum-entropy priors [probabilities].”

The “connected regions” to which Shepard alludes echo our own emphasis on the
importance of continuity to cognition and adaptive behavior generally. Shepard’s
mention of “Bayesian revision” of probabilities points to Brunswik’s, and our own,
observation that many environments often possess irreducible uncertainty. As such, the
human is required to adapt to the world in a statistical, rather than a deterministic sense.
James. J. Gibson titled his 1957 Contemporary Psychology review of Brunswik’s
probabilistic functionalism as “Survival in a World of Probable Objects” (Gibson
1957/2001; Kirlik, 2001; Cooksey, 2001). This title suggests that Gibson’s gloss of
Brunswik’s approach to describing the demands of with adapting to an uncertain world
was very much in the spirit of Shepard’s, presented some 40 years later.
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In the spirit of Shepard’s research, Barlow (2001) has noted, for example, that there is
widespread agreement that the perceived “trajectory of an object is a joint function of
perceptually sampled data and of the bias that is intrinsic to psychological space.”
Perception can thus be regarded as a process at the intersection of internalized,
environmental regularities (via evolution, development, and experience) and the
information available from the external, currently present environment. Barlow pointed
out that it was Brunswik who first suggested that:

“The laws governing grouping and segregation of figure from ground were more
than empirical facts about perception: they were rules for using statistical facts
about images to draw valid inferences from the scene immediately before the
eyes. [Brunswik] pointed out that two perceptual samples having similar local
characteristics are likely to be derived from the same object in the external world.
Therefore, it is adaptive to have a built-in heuristic bias that they are from the
same object.”

Barlow (2001) also reviewed recent neurophysiological results which further confirm that
the natural ecology’s reflection: a four-dimensional, strongly continuous, metric space is
“wired into” the central nervous system at a fundamental level. This body of research
lends support to the lens model’s basis in principles of environmental-psychological
symmetry.

Additionally, Barlow has noted the existence of “neurophysiological mechanisms that
exploit the redundancy of sensory messages resulting from statistical regularities of the
environment,” lending additional support to Brunswik’s view that vicarious functioning,
exploiting these ecological redundancies, may very well play the role of the “backbone of
stabilized achievement” (Brunswik, 1956, p. 142).

The question remains, however, as to why a preference for low-dimensional, continuous
representations should extend beyond basic perception and action, and also into the
cognitive realm, “beyond the information given” (Bruner, 1973). The answer, we believe,
lies in the advantages of continuous representations for supporting learning and efficient
information processing, advantages to which Shepard (1999, quotation above) alluded.

As demonstrated by the groundbreaking research of Landauer et al. (1997), discrete,
symbolic representations such as natural language are not necessarily separable from
Kahneman’s “System 1” or Hammond’s “intuition.” Rather, as Landauer et al.’s work
demonstrates, a ubiquitous learning process exists to convert the discrete to the
continuous. This adaptive process automatically converts symbolic perceptual
information, such as text, into continuous, spatial cognitive representations, tends to
produce and strengthen constraints on inference, and tends to reduce the dimensionality
of the discrete input space. By “strengthening constraints,” we refer to a process of
mapping discrete or categorical representations to continuous metric spaces, and mapping
weakly continuous spaces into strongly continuous ones.

To take a more concrete example, Landauer, Laham, Rehder, and Schreiner (1997) have
shown that a linear neural network, operating on a corpus of sequenced discrete tokens
(words, for example), will induce a multidimensional continuous space summarizing the
tokens and their associated contexts. The space is bootstrapped from the underlying
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continuity of time, which enforces the basic sequential ordering of the tokens. On the
basis of the induced continuous space, a range of abstract, symbolic tasks can be
performed at levels of achievement equal to or better than expert human performance.
Examples include matching documents of similar meaning but with no shared words,
while rejecting documents with shared words but having dissimilar meaning; choosing
correct answers on standardized vocabulary tests; responding to semantic priming in
laboratory experiments; learning from instructional texts; interpreting novel analogies
and metaphors, and, in many instances, grading student essays as well as human graders.
Along similar lines, McGreevy and Statler (1998), using a using a different but related
algorithmic technique, have demonstrated that the interpretation and comparison of
discrete and symbolic verbal accounts of aviation incidents reports could be enhanced by
translating these verbal data into continuous spatial representations.

The Unique Benefits of Continuous Spaces
At a high level we have already discussed some of the benefits that continuous, metric
spaces confer upon adaptation. The availability of convergent, recursive learning
processes (Landauer et al., 1997) and the compression of information made possible by
continuous, metric representations can, in many cases, offset the disadvantages of
applying continuous operations to problems that could be more ideally addressed by
discrete, logical, and symbolic activities. On the down side, Kahneman (2003) provides a
thorough discussion of these potential disadvantages (see also Hastie & Dawes, 2001;
Freed & Remington, 1998). On the up side, the recursive learning and information
compression enabled by continuous representations point to the most obvious (and some
might say, the only) information-processing capabilities of neural networks. This
property of intrinsic, environmental, or automatically-derived cognitive continuity, tacitly
presumed in so many studies and models of learning and adaptation, is so ubiquitous that
it is easily overlooked. Yet, continuity confers an enormous range of functional
advantages enabling purposive behavior and adaptation in an environment that is
dynamic and unpredictable.

Most importantly, continuity supports approximation and convergence. These properties
enable statistical or neural-network based learning and generalization. In contrast,
discrete spaces, characteristic of the interfaces of many everyday technologies (e.g.,
VCRs, cell phones), do not support efficient learning and generalization, nor do they
support flexible goal-directed behavior. Why? Simply put, because one discrete state is
no more or less like any other discrete state. As such, unless an interface designer
provides cues (e.g., proximity, color or shape coding, hierarchical menu structuring), to
explicitly support inference, there is typically little support for generalizing what is
known about any one discrete state (display or control) to any other.

In the natural ecology at the human scale, continuity as a resource for learning and
generalization is crucial to guarantee the convergence of adaptive solutions to problems
of many types. For example, if we are practicing our piano skills and our teacher tells us
that we played a certain note too softly in one case, and too loudly on our next attempt,
we can infer that if we play the note at an intermediate level of force on our third try that
we are at least likely to obtain a better outcome. Contrast this case with trying to adapt to
a discrete space, such as the state-space of a digital wristwatch. Given that you know the
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result of pushing two of the three buttons on the watch, what can you learn about what is
likely to happen if you push the third? Nothing.

In some cases, of course, a continuous, multidimensional space simply cannot accurately
represent all the necessary distinctions required to achieve perfect adaptation, as is
sometimes the case in understanding natural language. Yet, as Dawes (1979) has
suggested in his classic article, “The robust beauty of improper linear models,” the degree
of “meaning” that is lost by moving from discrete and symbolic to continuous metric
spaces (e.g., those spaces supporting simple cue weighting and averaging judgment
strategies) is often minimal enough that this inaccuracy is tolerable (also see Goldberg,
1968). In short, the benefits of continuity-supported generalization, convergence, and
robustness often outweigh the costs of discrete precision.

It is important to recognize the central role of the concept of “robustness” in the present
context, due to its intimate relationship to vicarious functioning, Brunswik’s term for the
“backbone of stabilized achievement.” Hammond (1996), in commenting on the
pioneering work of Dawes and Corrigan (1974) on this issue, has aptly characterized the
central insights:

“An interesting and highly important discovery, first introduced to judgment and
decision making researchers by R. M. Dawes and B. Corrigan, is that organizing
principles of this type [weighting and summing cues] are extremely robust in
irreducibly uncertain environments. That is, if (1) the environmental task or
situation is not perfectly predictable (uncertain), (2) there are several fallible
cues, and (3) the cues are redundant (even slightly), then (4) these organizing
principles (it doesn’t matter which one) will provide the subject with a close
approximation of the correct inference about the intangible state of the
environment, no matter which organizing principle may actually exist
therein—that is, even if the organism organizes the information incorrectly
relative to the task conditions!” (p. 171)

Thus, intuitive or System 1 cognitive strategies, which are dependent on ecological
continuity to support simple weighted averaging, provide reasonable levels of adaptation
even if a person has little or no a priori knowledge of the structure of the environment
(Hammond’s “organizing principle therein”). Also, by supporting generalization and
convergence, ecological continuity supports the statistical or neural network learning
underlying adaptive behavior.

If we take continuity-supported, intuitive (System 1) cognition as the “backbone of
stabilized achievement,” what, then, is the primary functional role of the analytical pole
of the intuitive-analytical continuum (Hammond, 1996; Kahneman, 2003)? Current
research on dual process theory suggests that discrete, analytical processes seem to be
involved in noticing potential anomalies, in monitoring the effectiveness of intuitively-
driven behavior, in directing attention to novel events, and in resolving conflicts when
multiple and competing intuitive judgments or decisions must be arbitrated (Barnden,
1999; Kahneman, 2003). Activities such as these each touch on the demand for cognition
to achieve internal coherence (Hammond, 1996; Thagard, 2000), which is typically
understood to be an analytical activity involving the use of discrete logical operations, or
System 2 cognition. We should note, however, that Hammond (2000) has recently
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proposed the intriguing idea that both coherence and correspondence can each be
achieved either intuitively or analytically. For the purposes of this chapter, however, our
treatment remains more faithful to previous account offered by Hammond (1996/2000),
that:

“The central feature of the correspondence theory of judgment is its
emphasis—inherited from Darwin—on the flexibility of the organism in its
adaptive efforts, its multiple strategies, its ability to rely on various
intersubstitutable features—what are called multiple fallible indicators [i.e.,
vicarious functioning]” (p. 63).

As such, while possibly simplified, we will assume that the essence of correspondence-
based achievement lies in the intuitive mechanisms underlying vicarious functioning,
whereas the essence of coherence-competence lies in analytically dominated, System 2,
cognition.

The logical and analytical operations underlying coherence-seeking activities stand in
contrast to the demand for cognition to arrive at adaptive solutions corresponding with
the facts, constraints, or demands of the external world (empirical accuracy).
Understanding this latter, continuity-supported, intuitively-gained, adaptive
correspondence between the actual and the perceived was Brunswik’s primary focus. It is
our own focus as well, in the sense that we believe that computer and interface
technology that short-circuits these adaptive mechanisms will lead to a variety of learning
and performance problems in human-automation interaction. For more on this coherence-
versus-correspondence (analytical/intuitive) distinction, see Mosier and McCauley (this
volume), suggesting that increasingly technological ecologies are indeed placing
increased demands on discrete, symbolic, and analytical coherence-seeking (rather than
correspondence-seeking) cognition. Note also that Mosier and McCauley’s findings are
consistent with what our analysis would expect: People are generally poor at attaining
cognitive coherence in discrete, digital ecologies, quite possibly for the reasons we have
suggested above.

IMPLICATIONS FOR THE DESIGN OF HUMAN-AUTOMATION
INTERACTION
There is ample evidence that people have trouble interacting with discrete interfaces and
“navigating” through their many modes, menus, sub, and sub-sub menus (Degani, 2004;
Norman, 1999). The frustrations that people have configuring and using the menus of cell
phones are popular examples. In more complex systems, it is well documented that
digital interactive systems may embody design flaws tied to their discrete mode structures
(Degani, 2004). These flaws lead to confusion, and at times, deadly mishaps (Degani and
Heymann, 2002).

To better understand these problems, in the following we leverage the distinctions we
have made between continuous and discrete ecologies, along with their attendant
cognitive implications, with the goal of better supporting human-automation interaction
through better interface design. To this point we have emphasized that humans often
gravitate toward intuitive (System 1) strategies for making judgments and decisions.
Additionally, we have suggested that these strategies are generally robust and reasonably
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effective, but are best supported when the human is interacting with a continuous, rather
than a solely discrete, ecology (or interface).

We have also pointed out that humans, especially in dynamic and uncertain contexts,
often have limited cognitive resources available for effectively navigating the geometry
of digital ecologies in an analytical fashion. We, and the findings reported by Mosier and
McCauley (this volume) suggest, that everything possible should be done in design to
reduce the demands for a system user or operator to rely on coherence-seeking, analytical
cognition. If this goal is achieved, then the resources demanded by analytical cognition
would be freed-up to for the monitoring, arbitrating, and attending-to-novelty activities to
which it appears suited.

Like any cognitive system, a system comprising humans coupled with technology
requires both internal coherence and correspondence with the external facts of the world.
As described above, we have advocated leaving the attainment of correspondence to the
adaptive, intuitive competence of the human operator or user. Regarding the goal of
ensuring overall human-automation system coherence, we suggest that this task on should
fall largely on the designer, prior to a system being put into operation. With the task of
achieving coherence (e.g., ensuring the integrity of the system with respect to efficiency
and safety) offloaded to the design process, the human operator or user can then rely to
the greatest extent possible on the intuitive mode of cognition known to underlie fluent,
robust, and adaptive behavior.

Thus, one can view our solution to the problem of ensuring the goals of both maintaining
correspondence with the facts of the world, as well as overall system coherence, in terms
of a simple problem decomposition. We advocate assigning the first task to the human
operator, or user, who we presume to rely heavily on robust and adaptive intuitive
(System 1) cognition, and who is able to benefit by real-time access to timely
information. In contrast, our solution assigns the task of ensuring the coherence of overall
system operation to the designer, who is shielded from the time pressure and other
stressors of real-time operations, and who thus has the cognitive resources available to
rely upon analytical tools and analytical (System 2) cognition.

As such, we advocate the use of formal analysis and design techniques to verify that the
geometry of human-technology interaction is efficient and safe. This approach to design
requires highly detailed, functional analyses of technological artifacts, their interfaces,
their environments of use, and the tasks they support. We will first discuss these formal
techniques at a general level, and then demonstrate the approach using a variety of
concrete examples.

ANALYTICALLY ENSURING COHERENCE IN SYSTEM DESIGN
One formal approach to ensuring the coherence of human-automation interaction in the
design phase is a hybrid modeling technique termed Communicating Sequential
Processes (“CSP”—see Hoare, 1985; Schneider, 2000). Techniques such as CSP ensure
the overall integrity, or coherence, of systems comprised of multiple computational
elements to, for example, guard against deadlocking, the system entering dangerous or
“illegal” states, and so on. Relatedly, a variety of discrete, finite-state-machine models
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can also be used to create formal representations of human interaction with control
systems. A basic element of such a description is a labeled, directed graph which captures
system states, events, conditions, and transitions. For example, while an aircraft is in
“Cruise” mode (current state), and button x is pressed, and the descent profile is armed,
(two conditions that when TRUE trigger an event), the aircraft control system will
transition to “Descent” mode (a new state).

Due to the lack of continuity in discrete space, human operators or users cannot always
reliably anticipate the future mode configuration of a machine unless they have a detailed
internal model of the machine’s behavior, including its states, conditions, and transition
logic. (Degani, Shafto, & Kirlik, 1999). They must rely on a priori knowledge (e.g., an
internal model), because lacking a continuous, metric representation of the technology,
they cannot deploy their robust, intuitive cognition in the sense discussed by Dawes,
Hammond, and Kahneman.

Human interaction with automation is currently evaluated through extensive simulation.
Smith et al. (1998) note the serious problems that can occur with solely simulation-based,
(empirical) evaluation of complex human-automation interaction. Because of their
combinatorial nature, discrete and hybrid systems have enormous state spaces, and
empirical techniques that necessarily sample only a small subset of the entire state space
are clearly insufficient as a basis for design verification. As such, predictive, model-
based, formal methodologies for design verification are critical for identifying
deficiencies early in the design phase. To verify system safety, a safety specification is
initially represented as a restricted region of the state space in which the system should
remain. On the basis of this functional analysis, the goal is to synthesize automation
design that guarantees that the state of the system will remain within a safe region.

Using the same modeling formalisms used to describe machine behavior (the “machine
model”), it is possible to also describe the information provided to the user. This “user
model” of the system, which is based on the information provided to the user (e.g., pilot)
via displays, manuals, procedures, training, and personal experience, may differ from the
actual “machine model” of the system. With these two models in place, it becomes
possible to systematically and comprehensively verify that the interfaces (and all other
information provided to the user) are correct. This, in principle, is done by constructing a
composite model where the user-model states and machine-model states are combined
into state-pairs. Next, the verification process simulates an activation of the composite
model, where the user-model and the machine model evolve concurrently in a
synchronized manner (Heymann and Degani, 2002).

This verification process detects three types of user-interface inadequacies that are based
on the criteria set by Heymann and Degani. The first inadequacy—the existence of error
states—occurs when the user interface indicates that the machine is in one mode, when in
fact the machine is in another. Interfaces with error states lead to faulty interaction and
errors. The second inadequacy—the existence of restricting states—occurs when the user
is unaware that certain user interactions can trigger additional mode changes in the
machine. Interfaces with restricting states tend to surprise and confuse users. The third
inadequacy—the existence of augmenting states—occurs when the user is informed that a
certain mode is available, when in fact the machine does not have that mode, or access to
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certain modes is disabled. Interfaces with augmenting states puzzle users. Other problems
can also be revealed by such analytical, formal analysis. For example, if the overall
composition model “deadlocks,” the system may have reached a state in which no
effective control input is available to ensure system safety.

EXPLORING THE GEOMETRY OF HUMAN-TECHNOLOGY
INTERACTION: CONCRETE EXAMPLES
To illustrate our perspective on designing to enhance human-technology interaction, we
now turn our attention to three everyday examples:

Pedestrian Crossing Signals
The first example consists of a pedestrian crossing signal found at many intersections
with traffic lights. The most familiar ones have three states (or modes): a red hand for
“DON’T WALK,” a walking-person symbol for “WALK,” and a flashing hand to
indicate that the light is about to turn red and crossing is unsafe. Newer models, which
now can be found in many intersections, provide, in addition to the flashing hand, a
digital countdown display (in seconds), indicating when crossing will become unsafe
(and the “DON’T WALK” symbol will appear).

The old interface is discrete: don’t walk, walk, hurry up. The new interface also indicates
the time remaining until crossing will become unsafe (the “DON’T WALK” symbol
appears). The new design is a “hybrid interface,” containing both discrete states and one
close approximation to a continuous variable (the “countdown time”). Most people prefer
the new interface because it reduces their fear that the light will turn red while they are in
the middle of an intersection. When the light begins to flash and the countdown is
displayed, the walker can assess the situation, and decide if he or she needs to run, walk,
or perhaps turn back and wait for the next light. Note that by augmenting the interface
with continuous information, better supporting the walker’s intuitive judgment, the entire
human-technology system gains a greater level of coherence (in this case, through an
increased level of assurance that safety goals are met).

Traffic Signals
Consider the next scenario: now you are in your car driving toward an intersection, and
you can see a green traffic light in the distance. As you approach the intersection, the
light turns yellow. What should you do? Brake or proceed through? Figure 2 shows a
region in which braking is safe; i.e., given any combination of speed and distance within
the dark gray region, the car will stop before the intersection. This region is determined
by calculating the stopping distance for every speed from 1-60 miles per hour based on a
car’s maximum braking performance. The yellow light is 4 seconds long, and we take
into account that it takes the average driver 1.5 seconds to react and press on the brakes.
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Figure 2.  The Safe Braking Region (X-Axis is Distance from Intersection, Y-Axis is Speed)

As for the other option, driving through the intersection, let us assume that the driver,
once he or she observes the yellow light, simply maintains the current speed. Figure 3
depicts the safe drive-through region (while maintaining constant speed). Now that we
know the consequences of either stopping before the intersection or driving through it, we
can turn to the decision itself. So how do we know, when the yellow light appears, what
to do? The truth is that in most cases we don’t. We don’t have the analytically-derived
graphs of Figures 2 and 3 available, and therefore our decision is based on our intuitive
estimation of what Gibson and Crooks (1938) called “the field of safe travel.” Most of the
time our intuition works, but in some cases we either pass through a red light or try to
brake but end up stopped in the intersection.

Figure 3. The Safe Proceed-Through Region
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Now, consider designing a dashboard interface to help the driver make this decision. To
do so, we first need to map the physical space and the system behavior vis-à-vis the
operational demands (stopping or proceeding through). We do this by considering the
“safe braking” region and the “safe proceed-through” region together. Figure 4 shows
that the composition of the two graphs divides the physical space into four sub-regions.
The dark gray region is “safe braking,” the light gray is “safe proceed-through,” and the
black region is where these overlap (if you are in the black region, you can either brake or
proceed through, and you'll still be safe and legal).

Figure 4. Composite of the Safe-Breaking and Safe Proceed-Through Regions

Unlike the above three regions from which a safe control action can be taken, the fourth
(hatched) region represents combinations of speed and distance from which you cannot
safely brake or proceed safely: If you try to stop, even at maximum braking force, you
will find yourself entering the intersection on red. And if you proceed through, you will
reach the white line with a red light above you. In other words, if you are in the hatched
region when the light turns yellow, you will commit a violation, no matter what you do
(and as for the tempting option of “gunning it” through, calculations show that
acceleration only reduces the size of the hatched region, but does not eliminate it). See
Oishi, Tomlin, & Degani, 2003 for the technical details of this kind of analysis.

This problematic region, which is well known to traffic engineers, is called the “dilemma
zone” and exists in many intersections (Liu, Herman, & Gazis, 1996). From a design
perspective, this implies that we not only need to display if the one in the “brake” or
“drive through” region, but also the “dilemma zone.” But if we think about it for a
minute, just providing a discrete indication, “You are in a dilemma zone,” is not enough.
Why? Because it’s too late! For the interface to ensure the coherent, safe operation of the
entire human-technology system, it must provide a continuous indication of the proximity
of the car to the dilemma zone, so that the driver can avoid entering it. And unlike the
pedestrian light, where the countdown timer is a welcome, “nice to have,” addition, in the
yellow light case, it is an imperative. An interface that provides solely discrete
indications (“brake,” “drive through,” “in the dilemma zone”) is unsafe!
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Automatic Landing Systems
Our final example concerns one aspect of the automatic flight control system on board
modern airliners designed to make a fully automatic landing. An automatic landing
system, or “autoland,” is commonly used in bad weather, specifically in a condition
called “zero-zero” in pilot lingo, meaning visibility is zero and the clouds or fog reach all
the way to the ground.

In these severe conditions, only the autoland system is permitted to make a landing. But
there is one option that is always available to the pilot—to discontinue the approach and
abort the landing, and then command the aircraft to climb out. Such aborted landings, or
“go-arounds,” are well-practiced maneuvers, with the goal of taking the aircraft away
from an unsafe situation such as an autoland component failure, electrical system failure,
or any other malfunction making the approach and landing unsafe. In some cases, a go-
around is requested by air traffic control. For example, an aircraft may come too close to
another aircraft on approach, or there may be debris, a vehicle, or another aircraft on the
runway on which the aircraft is to land.

We wish to consider the kind of information that must be provided to the pilot while the
autoland system is making the approach and landing. In particular, our focus is on the
critical, last 60 feet of the approach. Just as we did in the case of the yellow light, we first
need to map out the physical space and the technological (control system) spaces. Then
we need to relate them to the two control options available: either the airplane lands or
attempts a go-around.

Figure 5. Safe Landing
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The funnel shape in Figure 5 depicts the region from which an autoland system can make
a safe landing. The three axes are the aircraft’s altitude above the runway, speed, and
flight-path angle (which is the angle at which the airplane descends towards the
ground—see top of Figure 5). In principle, the shape is computed in the same way as the
“safe breaking” and “safe proceed through” regions in the yellow light example. We start
from touchdown, where the flight-path angle should be between 0 and -2 degrees, and
work our way back. (If the angle is greater than zero, the airplane will not be able to land;
if the angle is less than -2 degrees, the aircraft’s tail will hit the ground). For each
altitude, from 0 to 60 feet, we compute the speed and flight-path angle the autopilot needs
to maintain, such that eventually the aircraft will make a safe landing.

 

Figure 6. Safe Go-Around.

As for the second option, the “safe go-around,” Figure 6 depicts a rather large region,
because unlike the safe landing region that funnels down to the runway at a tightly
constrained angle and speed, the go-around can be executed safely at a variety of flight-
path angles and speeds (see Oishi, Tomlin, & Degani, 2003 for the technical details of
these computations).

We now combine the safe landing region and the safe go-around region (just as we did in
the yellow light example). For the sake of illustration, consider what will happen when a
go-around is commanded when the aircraft is 20 feet above the ground. Figure 7 is a slice
of the safe-landing region at this altitude. Figure 8 is a similar graph for the safe go-
around region.
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 Figure 7. Safe Landing Region at 20 Feet

 Figure 8. Safe Go-Around Region at 20 Feet

The composite graph of Figure 9 shows three emerging sub-regions: the gray region is
the safe go-around region, the black region depicts where safe go-around overlaps with
safe-landing, and the hatched region is solely the safe-landing region. Because a go-
around is a situation that can occur at any time during landing (and there may be no
advance warning of when the maneuver will be needed), the black region is where we
always want to be: from here the autopilot can make a safe landing, and if a go-around is
needed, it can be executed safely by the pilot.
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Figure 9. Composite Graph at 20 Feet.

The hatched area, however, is where we don’t want to be. Under normal conditions, the
autopilot will try to make the landing when the flight-path angle is close to 0 degrees, but
under less than nominal conditions, such as gusts or a strong tailwind, the autopilot may
be operating in the hatched region in which, nevertheless, a safe landing can be
completed. Safe landing, however, is only one requirement. We also need to be in the
“safe go-around,” region, and herein lies the problem: If the autopilot is operating in the
hatched region, the pilot will not be able to execute a safe go-around, either at this
altitude of 20 feet, or at any lower altitude. If the autopilot is operating in the hatched
region and a go-around is attempted, the aircraft may stall!

Lessons Learned
To summarize, the yellow light and autoland examples highlight several important issues
in the design of automated control systems in general, and human-automation interaction
in particular. One issue has to do with the complexity of the physical space and system
behavior that produces the “dilemma zone” and the “Safe Landing/Unsafe Go Around”
regions. Identifying these regions requires analysis, which can yield counter-intuitive
results (did you know that when you get a citation for a red light violation, in some cases
it may be not your fault?). This analysis requires a perspective drawing on the discrete-
versus-continuous ecology distinction, and analytical tools for mapping out the geometry
of human-technology interaction.

Another issue, centering on interface design, concerns a tendency many designers have to
provide solely discrete indications. There are two problems with this. First, a driver using
such a discrete alerting interface has no warning as to when the “dilemma zone” is being
neared. The interface would just “light up” or alarm. And if it does, it’s too late, because
the human-technology system is already in an unsafe region. Likewise, by providing the
pilot with solely a discrete indication of the “unsafe go-around” region, we haven’t
solved the problem. Since, in most automated control systems, the existence of unsafe
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regions is inevitable, interfaces must also provide the user with continual guidance as to
system’s proximity to the unsafe region.

Finally, an important distinction should be made between the driving example and the
aviation example. In the yellow light case, it is the driver who (manually) enters the
unsafe region from which any action (brake or proceed-through) will have dangerous
consequences. In contrast, in the autoland case, it is the automation that takes the user
into an unsafe region, from which recovery is difficult, and at times, impossible. This
situation, arising from the complex, and not yet well understood, interaction between
discrete modes and continuous processes is termed “automation lock.” Such locks have
lulled many pilots into dangerous situations, some unfortunately resulting in accidents
(FAA, 2004; Degani, 2004: Chapter 17).

CONCLUSIONS
The title of this chapter is borrowed from Bryant (1985, pp. 87), who asks the question,
“What makes analysis work?” His answer is built around the concept of continuity.
Continuity makes it possible to represent and reason about complex, dynamic, and non-
repeating phenomena. It makes available a range of tractable methods for interpolation,
extrapolation, approximation, and the integration of fragmentary data. All are essential to
vicarious functioning.

The products of the psychological processes of perception, cognition, and learning can be
described in terms of cognitive representations, ranging from the continuous to the
symbolic and discrete. Basic perceptual processes enforce assumptions about spatio-
temporal continuity (Barlow, 2001; Shepard, 1999). And even in situations where
discrete, symbolic representations are more precise, continuity is generated to support
adaptive, heuristic reasoning and learning in abstract symbolic spaces (Hastie & Dawes,
2001; Kahneman, 2003; Landauer et al., 1997).

Digital control systems, and their corresponding discrete (mode) interfaces, disrupt
continuity. In the extreme case, we are left with a step-by-step search through a space in
which each move is equally capable of taking us into a familiar room or a blind alley.
Furthermore, it is very difficult (and most of the time impossible) to design or learn to
operate large and complex systems that are based on unrestricted, discrete spaces.
Designers are overwhelmed by the large state spaces of technological systems (which
may include thousands, if not millions, of possible states). And users are faced with the
challenge that achieving an exact understanding of a system’s behavior is impossible, yet
reliable abstractions or approximations are unavailable.

Egon Brunswik emphasized the role of pattern-pattern correlations in complex perception
and action. This is the fundamental principle underlying the lens model. In natural
environments, spatial cues and spatio-temporal trajectories rarely or never repeat
themselves exactly. An underlying continuity must be assumed to enable inference and
generalization from fragmentary, non-repeating, data to stable objects and predictable
trajectories. Vicarious functioning, or purposive behavior, is essentially adaptive. Local
adaptations involve corrections and alternate paths. Global adaptations involve learning
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converging to stable pattern-pattern relations, in that the patterns are more reliable and
robust than single cues or individual, cue-object associations.

Early in this chapter, we described how canonical correlation analysis can be used to
identify pattern-pattern correlations in the way pilots interact with automation, and, more
importantly, how to capitalize on the regularities of these patterns to identify unusual
deviations and dangerous outliers. It may be appealing to think, that because stochastic
patterns repeat with some regularity even in digital systems, that human users or
operators can adapt to them just as they can adapt to the familiar, physical environment.
This, however, is only true as long as the system remains in a restricted, familiar
subspace of the overall state space. Problems arise from the fact that, although
approximations to continuous processes can have bounded errors, continuous
approximations to discrete systems are not so well-behaved. Outside the nominal,
familiar subspace in which a system nominally operates, that is, in unusual situations and
at unexpected times, underlying ecological discontinuities may suddenly manifest
themselves, and the resulting consequences of the errors in a continuous approximation
may be arbitrarily large.

Currently, a tendency exists among designers of both everyday devices and more
complex systems to mimic the underlying, discrete nature of computer-based artifacts
with a “simplified,” all-discrete interface. Since many consumer devices and all
automated control systems are hybrid (i.e., they contain both discrete and continuous
process), solely discrete interfaces to automation (e.g., mode settings, alerts, alarms) may
abstract away important, and sometimes, even critical information.

Due to the paucity of formal, rigorous, and systematic methods for supporting human-
technology interaction design, the tasks of creating these abstractions and their attendant
interface design simplifications are too often performed intuitively, and in an ad-hoc way.
The result, in many cases, is user frustration, confusion and, in the case of high-risk
systems, the possibility of disaster. We hope that the insights we have offered here,
advocating the formal analysis of the geometry of human-technology interaction, will
take at least a small step toward remedying this situation.
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